

LDA: Technical details

Wouter van Atteveldt

CCS Hannover, Feb 2018

LDA: Technical details

Wouter van Atteveldt

Programme

Intro: clustering the DTM

Tuesday:

- $\bullet\,$ AM: Intro, Text analysis with R
- PM: Topic Modeling: application and validation

Wednesday:

- AM: Technical Details
- PM: Structural Topic Modeling

Thursday:

• AM: Linguistic processing; visualization

Intro: clustering a DTM

- Text is difficult and scary
- But a DTM is just a data matrix, right?
 - Documents are observations (subjects)
 - Terms are measurements
- Can we use 'normal' techniques for clustering text?

Intro: clustering the DTM

Latent Semantic Analysis / Indexing

- LSA/LSI: apply Singular Value Decomposition to DTM
- Similar to factor analysis:
 - Can we find common 'factors' among the terms?
- Found to mimick human generalizations of meaning
- But also found to be problematic:
 - Difficult to interpret (negative values)
 - Not robust to ambiguous terms
 - No theoretical interpretation of mechanism

(Deerwester et.al., 1990, *Indexing by Latent Semantic Analysis*)

SVD and factor analysis

- Any $m \times n$ matrix M can be decomposed into UDV'
 - D is a diagonal matrix with the *r singular values*
- If all singular values are kept, this is lossless (M = UDV')
- By only keeping the first (highest) k values, we effectively reduce the dimensionality:
 - U is $m \times r$ document factor matrix
 - V' is $n \times r$ term factor matrix
- U are the PCA factors, and D^2V the factor loadings

See handout graphical interpretation (SVD)

Wouter van Atteveldt

э

Latent Dirichlet Allocation

- Evolution of LSA
- Full generative model:
 - Assume an author draws a mix of topics, and a mix of words from these topics
 - Topics are a probability distribution over words
 - $\bullet \ \rightarrow \ \mathsf{Good} \ \mathsf{interpretability}$
- Mixture model:
 - Words can be in multiple topics (\rightarrow deals with ambiguity)
 - Documents in multiple topics (\rightarrow deals with mixed content)
 - But skewed towards a couple of topics, depending on lpha

Dirichlet distribution

- Every topic, document is a probability distribution
 - How likely is word w in topic z, or topic z in document d?
- These are drawn from *dirichlet distribution*

Intermezzo: Restaurant tables

- You walk into the room for the conference dinner and want to sit somehwere
- You prefer not to sit alone, so choose a table with more people
 - $P(t_i) = n_i / \sum_j n_j$
- Everyone does the same
- After a lot of people enter, the distribution converges to equilibrium
- (also known as polya's urn with different colored balls; draw one out and add another one of that color)

http://topicmodels.west.uni-koblenz.de/ckling/ tmt/restaurant.html?parameters=3,2,1,5 Intro 00000

Latent Dirichlet Allocation

Dirichlet walked into a restaurant...

Wouter van Atteveldt

nar

Dirichlet walked into a restaurant...

- The restaurant/urn converges to dirichlet distribution for a given alpha
- The initial number of people at the tables is the alpha hyperparameter
- The resulting final distribution is a single multinomial probability distribution
- Intuitive effect of lower alpha:
 - initial assingments have larger effect
 - likelier that a single table will get all participants
- Alpha's are hyperparameters
 - co-determine multinomial *parameters*

LDA 000000

Latent Dirichlet Allocation

Alpha and Dirichlet

(Handout: Dirichlet Distribution and the Alpha)

Wouter van Atteveldt

Sac

LDA: what's not to like?

- Interpretable, plausible, elegant
- Generative model gives direct approach to find parameters:
 - a model gives p(w|m), so find m that maximizes this
- Problem: no analytic solution, and no good numerical solution

Enter: gibbs sampling

- Suppose you knew the topics of all words except for one
- That new word w in document d is a new guest/ball
 - Chance of picking topic z for document d is proportional to existing topics in document plus alpha
 - Similarly, chance of picking topic for the word is proportional to existing topics for word plus alpha
- This gives a probability distribution for z

Iterative gibbs sampling

- Start with random assignments of topics to words
- ❷ For each word w in document d
 - Compute proportion of topics in word and document
 - (disregarding w itself)
 - Compute probability of each topic z given those proportions
 - Pick a new topic from that probability
 - Update proportions for next iteration
- **3** Repeat from 2 until converged

(A. Brooks, LDA under the hood, https://tinyurl.com/zfpbatb Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. Handbook of latent semantic analysis, 427(7), 424-440.)

Training LDA with Gibbs Sampling

Gibbs sampling in R

- handout: LDA Animation
- handout: Gibbs sampling in R

< 行型

Sac